
An Empirical Study of the Robustness of Two Module
Clustering Fitness Functions

Mark Harman
King’s College
Strand, London
WC2R 2LS, UK.

Stephen Swift
Brunel University

Uxbridge, Middlesex
UB8 3PH, UK.

Kiarash Mahdavi
King’s College
Strand, London
WC2R 2LS, UK.

ABSTRACT
Two of the attractions of search-based software engineering
(SBSE) derive from the nature of the fitness functions used
to guide the search. These have proved to be highly robust
(for a variety of different search algorithms) and have yielded
insight into the nature of the search space itself, shedding
light upon the software engineering problem in hand.

This paper aims to exploit these two benefits of SBSE in
the context of search based module clustering. The paper
presents empirical results which compare the robustness of
two fitness functions used for software module clustering:
one (MQ) used exclusively for module clustering. The other
is EVM, a clustering fitness function previously applied to
time series and gene expression data.

The results show that both metrics are relatively robust
in the presence of noise, with EVM being the more robust of
the two. The results may also yield some interesting insights
into the nature of software graphs.

Categories and Subject Descriptors: D.2.7 [Distribution, Main-
tenance and Enhancement]: Restructuring, reverse engi-
neering and reengineering

General Terms: Algorithms, Experimentation.

Keywords: Clustering, Modularization, Fitness Functions.

1. INTRODUCTION
Search based module clustering has been used to auto-

mate the process of finding good choices of modularization
for software systems which comprise many modules. The
level of granularity of the clustering can be chosen to suit
the application, so a module might denote (at the fine level
of granularity) a single function or procedure or (at coarser
levels of granularity) a file (which may contain many proce-
dures and functions).

Often, the modularization imposed when the system is
first created becomes degraded as new modules are added
to a system and as the existing modules are maintained.
This degradation may be a signal, indicating the necessity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, D.C., USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

for a phase of re-drawing the module boundaries as a part of
the maintenance process. For some legacy systems, there is
no ‘initial modularization’ available because the system was
never created as a modular system. This makes mainte-
nance much harder and migration to more, inherently mod-
ular, languages (such as object oriented styles) very time
consuming and therefore costly [19].

In these situations, automation of the process of drawing
module boundaries can be highly cost effective. Automated
re-modularization through search based clustering analysis
has been an area of much interest in search based software
engineering, leading to the development of fast and effective
tools for automated software module clustering.

One of the attractions of search-based clustering (and of
search–based software engineering itself [2]) arises from the
robustness of the search algorithms. Software engineering
problems are typically ‘messy’ problems in which the avail-
able information is often incomplete, sometimes vague and
almost always subject to a high degree of change (includ-
ing unforeseen change) [19]. In the case of modularization,
the input information comes from dependence information
collected from the source code of the program to be modular-
ized. However, as programs evolve, their structure degrades,
and so a legacy system may contain spurious dependencies
which would be removed by restructuring.

In other engineering fields, this characteristic of messi-
ness, incompleteness and vagueness is typified by the pres-
ence of noise, and so the term ‘noise’ is used in this paper
as an umbrella term to indicate the inherent uncertainty in
the information available to an automated software mod-
ule clustering system. The paper presents the results of an
empirical study of the robustness of search based software
module clustering using two fitness functions to guide the
search: the MQ fitness function of Mancoridis et al. [13]
and the EVM fitness function of Tucker et al. [22].

The representation of a software module clustering prob-
lem is expressed using a Module Dependency Graph, fol-
lowing Mancoridis et al. [13]. These may be referred to as
MDGs or simply ‘graphs’ hereinafter. Data were collected
for the application of search based clustering applied to six
real and six artificial MDGs. The artificial systems allow
a comparison of how the techniques behave when applied
to perfect, real and random graphs. The experiments were
repeated for mutated versions of the systems under study.
The mutations of the systems represent the presence of in-
creasing levels of noise in the data, facilitating a study of
the robustness of the fitness functions as a guide to search
based clustering algorithms.

1029

The primary findings of this study are:

1. Searches guided by both fitness functions degrade smoothly
as noise increases, but EVM would appear to be the
more robust fitness function for real systems.

2. Searches guided by MQ behave poorly for perfect and
near–perfect MDGs (though results degrade smoothly
as noise is introduced, even for these graphs).

3. Tentatively, the difference in performance may shed
some light of the nature of program graphs themselves.
These results must be treated with caution, but there
is some evidence to suggest that program graphs are
closer to perfect graphs (those for which an ideal mod-
ularization exists) than to arbitrary random graphs of
equivalent edge density.

The rest of the paper is organised as follows: Section 2
describes the experimental methods, subjects used, the two
fitness functions studied and potential threats to validity.
Section 3 presents the results of the study and discusses
the findings. Section 4 briefly describes related work and
Section 5 concludes.

2. EXPERIMENTAL METHODS
This section describes the experimental methods used to

conduct the empirical study. Section 2.1 describes the sub-
ject programs and MDGs used. Sections 2.2 and 2.3 de-
scribe the search algorithms and fitness functions used. Sec-
tions 2.4 and 2.5 describes the method used to model the
effect of noise in the MDG and method used to assess clus-
tering similarity. Section 2.6 considers the threats to validity
of the results.

2.1 Subjects
An MDG is a graph in which nodes represent modules

and edges represent the dependence relationships between
modules. Three types of MDG were studied: real program
MDGs, random MDGs and perfect MDGs. The real pro-
gram MDGs come from six open source programs, ranging
in size from 20 modules to 174 modules, all of which are
above the size for which search–space enumeration is possi-
ble [15]. The details of these programs are summarised in
Figure 1. Their MDGs were obtained using the programs’
files, where each file corresponds to a module. Where one
file uses another file, these uses are treated as module de-
pendencies in constructing the Module Dependence Graphs.

The random graphs were obtained by constructing graphs
with a random number of edges for three different numbers
of nodes. The edge density (average number of outgoing
edges per node) was chosen to be identical to the average of
that for the real programs studied (about 10% of the max-
imum possible). Therefore, the random graphs are compa-
rable with the real programs in size and edge density, but
the connections are entirely random. Three random graphs
were studied, with different sizes: 50, 75 and 100 nodes
(modules). The details of these graphs are summarised in
Figure 1.

A perfect graph, is so-named because it is one for which a
perfect modularization exists. That is, it is possible to clus-
ter the modules of the graph in such a way that all modules
in a cluster are related to all other modules and there are no

extra–cluster relationships. Such a clustering achieves maxi-
mum possible cohesion and minimum possible coupling. The
graphs with perfect clusterings were constructed to have a
set of perfect clusters of nodes of increasing size. In all, the
cluster sizes start with a single node, which, in the perfect
clustering, belongs to a single module on its own, and range
up to a cluster of size k, which, in the perfect clustering, is a
cluster of k nodes, all of which are related to each other and
no other nodes. Three perfect graphs were studied: The
smallest with 55 nodes (with clusters of sizes: 1 to 10 in-
clusive nodes), and the largest with 105 nodes (with cluster
sizes from 1 to 14 inclusive).

2.2 Clustering Algorithm Used
The clustering algorithm used is based upon the Bunch

algorithm [15]. This was re–implemented to create a tool
BruBunch. The algorithm uses a hill climbing approach, like
that in Bunch, but does not include the facility in Bunch to
remove omnipresent and library modules prior to cluster-
ing. An Omnipresent module is one which has many in-
going and out–going relationships to other modules. Such
modules would tend to belong in every cluster and so they
can adversely affect the results of clustering. Similarly, a
library module, is one which is used by a large number of
modules (and which uses few itself). Library modules also
tend to ‘belong’ in a large number of clusters. The Bunch
tool has facilities to remove these omnipresent and library
modules so that their presence does not adversely affect the
clustering search.

These two features were not included in BruBunch, how-
ever, because one of the goals of the experiment is to ex-
plain the difference in behaviour for the clustering fitness
functions, when applied to perfect, real and random graphs.
Perfect graphs contain many omnipresent modules (by defi-
nition), so these could not be removed while retaining com-
parability with results for other graphs. In all other re-
spects the BruBunch tool is a faithful re-implementation of
the Bunch tool, constructed according to the literature on
Bunch [15].

The BruBunch tool was created to allow experimentation
with different fitness functions for clustering and different
search strategies1.

2.3 Fitness Functions Used
Two fitness functions were experimented with: MQ, as

implemented in Bunch and introduced by Mancoridis et al.
[13], and the EVM function of Tucker et al. [22]. MQ has
been used exclusively with Bunch and other work on soft-
ware modularization [4, 12, 13, 14, 15, 16, 17]. EVM was
introduced by Tucker et al. [22] and has been applied to
problems in time series data [22], and clustering of genes
according to gene expression data [7].

The MQ function is inspired by software engineering con-
cerns of maximizing cohesion and minimizing coupling [3].
It rewards clusterings for the presence of intra-module re-
lationships and punishes them for the presence of extra–

1Indeed, extensive experiments were carried out to attempt
to find the best search strategy for clustering, including vari-
ations on hill climbing, genetic algorithms and simulated an-
nealing. None of these were found to outperform the Bunch
algorithm in terms of the values of MQ for the clustering
found by each search strategy. The results of these experi-
ments are beyond the scope of this paper, but they do sug-
gest that the Bunch algorithm is highly effective.

1030

Name # # # EVM # MQ Description
nodes edges Evaluations Evaluations

Real Programs

mtunis 20 57 851,480 1,038,918 A simple operating system written in the Turing language
ispell 24 103 1,439,110 1,980,760 A spelling checking utility
rcs 29 163 3,339,980 4,075,838 A revision control system
bison 37 179 5,304,558 7,015,650 The GNU version of the yacc parser generator
grappa 86 295 33,038,804 60,471,698 Evolutionary Algorithm tools
incl 174 360 106,077,190 276,911,956 A graph drawing tool

Perfect MDGs

Perfect55 55 332 9,626,708 10,820,192 A set of completely connected sets of nodes of sizes 1 to 10 nodes
Perfect78 78 574 18,258,056 22,432,172 A set of completely connected sets of nodes of sizes 1 to 12 nodes
Perfect105 105 912 31,619,044 43,079,926 A set of completely connected sets of nodes of sizes 1 to 14 nodes

Random MDGs

Random50 50 246 8,534,744 14,614,824 A 50 node random graph. Edge density = six real programs’ average
Random75 75 556 19,124,304 42,643,116 A 75 node random graph. Edge density = six real programs’ average
Random100 100 991 35,289,124 87,125,460 A 100 node random graph. Edge density = six real programs’ average

Figure 1: Subject programs studied

module relationships. The EVM function was not defined
with software engineering goals in mind. Nonetheless, it is
similar, because it rewards clusterings which have a larger
number of intra-module relationships. However, it does not
directly punish clusterings which have extra–module rela-
tionships. Rather, for each cluster, c, it defines the score for
the cluster in terms of the maximum possible set of intra-
module relationships, incrementing the clusters’ score for
each relationship which is present, and decrementing it for
those which are absent. Therefore, it may indirectly punish
high coupling, because a re–allocation of modules to clusters
might turn high coupling between two modules into lower
coupling between them and higher cohesion within one (pos-
sibly both) of them.

In the following formal definitions of MQ and EVM, let a
clustering C be defined to be a set of sequences {c1, . . . , cm},
where each cluster ci is denoted by a sequence of elements,
such that {c1, . . . , cm} partitions C. Let ki be the size |ci|
of the ith cluster of C. Let cij refer to the jth element of
the ith cluster of C.

The formal definition [22] of EV M(C) for clustering, C is

EV M(C) =
mX

i=1

h(ci)

where, h(ci), the score for cluster ci is defined as:

h(ci) =

8<: Pki−1

a=1

Pki

b=a+1
L(cia, cib) if ki > 1

0 otherwise

where L(cxy, cpq) is defined as

L(cxy, cpq) =

8>><>>: 1 if there is a relationship from
cxy to cpq or vice versa

−1 otherwise

The formal definition [15] of MQ(C) for a clustering, C is

MQ(C) =

i=|C|X
i=1

CF(ci)

Where the score, CF(ci), awarded to a single cluster, ci is
defined as follows:

CF(ci) =
2µi

2µi +
j=|C|
j=1,j 6=i

ǫij+ǫji

2

Where µi is the number of relationships between elements
in cluster ci and ǫij is the number of relationships between
elements of cluster ci and cluster cj .

Strictly speaking, neither MQ nor EVM is a metric, since
the value is not normalised. That is, in each case, the value
of the function is the result of a summation over individ-
ual values for each cluster. Therefore, there are no upper
bounds to the functions’ values. The EVM function has
a global optimum corresponding to all modules in a single
cluster, where the modules are all related to every other
module. Similarly, for the ‘perfect’ MDGs, the perfect clus-
tering corresponds to the global optimum for EVM. For MQ,
the perfect clusterings do not correspond to global optima,
as will be seen (see Section 3).

2.4 Modelling Noise
In order to model the effect of noise, the MDGs stud-

ied are mutated by altering some of the edges of the graph.
This mutation, allows the MDG to gradually differ from the
original MDG from which it is created, with increases in dif-
ference created by larger amounts of mutation. The amount
of mutation is measured as a percentage. A mutation of an
MDG, m by x% represents the fact that x% of the entries
in m’s adjacency matrix have been changed (either from 1
to 0 or 0 to 1). Put another way, for x% of the pairs of
nodes in the graph denoted by m, an edge has been added
or removed where one was absent or present (respectively).

For each MDG studied, values of mutation from one to ten
percent (in increments of one percent) were experimented
with. As the mutation percentage increases, the MDG to
which clustering algorithms are applied becomes less and
less like the original and it is therefore expected that the sim-
ilarity in the clustering produced (when compared to that
of the original) will decrease. The interesting question is
the way in which clustering similarity will decrease as the
mutation rate increases.

1031

2.5 Assessing Clustering Similarity and Col-
lecting Results

The Weighted–Kappa metric [1] was used to measure the
similarity of two clusterings. The value of WK ranges from
-1.0 to 1.0, with values in the range 0.2 to 0.6 represent-
ing weak agreement and values above 0.6 representing good
agreement (with values above 0.8 representing very good
agreement).

The metric is computed in terms of a matrix of obser-
vations, with rows representing one observer and columns
representing the other. In this case, the observers are clus-
tering techniques. In general, there can be arbitrarily many
observations, but in this case there are only two. That is, for
a pair of nodes, the question is: ‘do these nodes occur in the
same cluster or a different cluster?’. For each pair of nodes,
a single observation is obtained. With two observers and two
possible observations (same cluster, different cluster) there
are four possible outcomes to a single paired observation.
In two of these four outcomes, both observers agree (either
agreeing on ‘same cluster’ or agreeing on ‘different cluster’).
In the other two, they differ (one observes that the nodes
are in the same cluster while the other observes that they
are in different clusters).

In general, where n observations are possible, an n–by–n

matrix is constructed. In this case the matrix is a 2–by–2
matrix. The four elements of the matrix each denote the
total number of occasions on which one of the four possible
outcomes occur. On the leading diagonal, the two ‘agree-
ment’ outcome totals are recorded: total number of pairs
where both clusterings agree: ‘same cluster’ and total num-
ber of occasions where both clusterings agree: ‘different clus-
ter’. The other two elements of the matrix record the two
possible ‘disagreement’ outcomes.

If the final value of the matrix contains zero in all places
other than the leading diagonal, then the observers agree
completely. In this case, it means that the clusterings are
identical and the value of WK will be 1. If the clusterings
are not identical, then some non-leading diagonal elements
will be non-zero. At the extreme, where the leading diagonal
consists solely of zero elements, then the clusterings are in
complete disagreement about every pair of nodes and the
value of WK will be -1.

For the perfect graphs, the perfect clustering is known and
so it is possible to compare the result of the clustering found
by search with the perfect clustering. For all other graphs,
the ‘perfect’ clustering is not known and so it is only possible
to compare the clusterings produced for increasingly noisy
versions of an MDG with the clustering obtained for the
original MDG.

In order to factor out the effects of randomness that are
inherent in the application of hill climbing search techniques,
the basic experiment was repeated ten times and the results
reported are averages over these ten runs. Therefore, for
each MDG, the WK metric is used to compare the results of
the initial clustering obtained for the iteration of the experi-
ment with each of those obtained for the subsequent ten runs
of the increasingly mutated versions of the original MDG.

In total, just over 280 million evaluations of the EVM
fitness function were computed and 580 million evaluations
of the MQ fitness function were computed. The number of
evaluations of each fitness function, for each of the MDGs
studied are reported in Figure 1.

2.6 Threats to Validity
In any empirical study, it is necessary to consider the pos-

sible threats to the validity of the results. There were no
human subjects in the empirical study reported here, and
so threats to validity primarily fall into those of external
and internal validity. The external validity concerns the ex-
tent to which it is possible to generalise from the results
presented.

In the case of the study reported here, the primary exter-
nal threat to validity is the number and variety of programs
considered. Are these typical? Can the results be consid-
ered to apply more widely? This is a common concern in
empirical studies of software systems, because of the diverse
nature of programs and the many differing applications to
which they may be put. To address this concern, an attempt
has been made to select a sample of programs with different
application characteristics, including, tools, operating sys-
tems, utilities and application software and with sizes which
vary by an order of magnitude.

The threats to internal validity concern the possible selec-
tion bias in the choice of subjects and in the application of
the experiment itself: Could the subjects could haver been
chosen to show certain characteristics? Could the results
could be a fluke, resulting from some random chance? The
programs used in the study reported here were a subset of
those used in other related studies [4, 13, 14, 15, 16, 17]. It
is unlikely that there was any selection bias, since the ex-
perimenters could not have predicated the results from the
MDGs due to the size of the search spaces involved. In or-
der to mitigate concerns over the possibility that the results
could have been obtained by random chance, the underly-
ing experiment on robustness was repeated 10 times for each
MDG and each fitness function and the results presented are
the average over those 10 iterations.

3. RESULTS AND ANALYSIS
Figure 2 shows the results of the experiment for perfect

MDGs described in Figure 1. Since these are graphs for
which the perfect clustering is known, the Weighted–Kappa
(WK) values are compared with those for the perfect cluster-
ing arrangement. In these figures, the horizontal axis shows
the mutation percentage and the vertical axis shows the
value of Weighted–Kappa. Each figure contains the results
for both fitness functions for comparison, indicated by tri-
angular points for MQ and square points for EVM. A point
plotted at (x, y) indicates that, when the MDG is mutated
by x percent, the average similarity (over 10 hill climbs) of
the clustering produced when compared to the perfect clus-
tering is y according to the Weighted–Kappa metric. In the
three graphs depicted in Figure 2 a additional mutation per-
centage of 0% is included (this is not included in the results
for non perfect MDGs which follow). This data point shows
the level to which the set of 10 initial hill climbs agree with
each other for the unmutated MDG.

Figure 3 shows the results for the six real programs. The
programs in Figures 3 are presented in order of increasing
size (reading from top to bottom, then left to right). In the
case of this and all other results (for non–perfect MDGs), the
perfect clustering is not known. For these figures, a point
plotted at (x, y) indicates that, when the MDG is mutated
by x percent, the average similarity (over 10 hill climbs)
of the clustering produced when compared to the cluster-

1032

ing obtained for the unmutated MDG is y according to the
Weighted–Kappa metric.

To allow comparison with the results for the random and
real MDGs, results were also collected to compare the clus-
terings of mutated versions of the perfect graphs with those
obtained in the initial clustering (rather than compared with
the perfect clustering). These results are depicted in Fig-
ure 4. Figure 5 shows the results of the experiment for the
three random graphs described in Figure 1.

In all these figures, the higher the values of WK achieved,
the closer the agreement with the clustering obtained from
the unmutated MDG (or the perfect clustering in the case
of Figure 2).

Clearly, the results for both fitness functions are better for
perfect graphs than for random graphs (as expected). How-
ever, notice that the results for perfect graphs show that
EVM produces clusterings which are perfect (for the perfect
graph) and that the clusterings produced stay very close to
the perfect results as more noise is introduced. This is true,
both for the comparison against the perfect clustering (Fig-
ure 2), and the initial clustering (Figure 4). By comparison,
the MQ fitness function performs much less well with these
perfect MDGs.

In Figure 4, both fitness functions are fairly robust (the
Weighted–Kappa values remain relatively stable as the mu-
tation rate increases). However, the similarity of the results
of the MQ–guided searches with the initial clustering are
much worse than those for the EVM-guided searches. Also,
the initial set of 10 hill climbs all converge on the perfect
clustering for EVM–guided searches, but not for the MQ-
guided searches. Moreover, there is a ‘lack of agreement’
among the MQ–guided searches, not found in the EVM–
guided searches.

This behaviour can be explained by the nature of the MQ
fitness function. It yields a value (between 0 and 1) for each
cluster in a clustering. If a cluster has only relationships
between members of the cluster and none to any elements
outside the cluster, then the score for the cluster is 1 (the
maximum possible). The value of MQ is the sum (over all
clusters) for the score for each cluster. For a perfect MDG
of n clusters, the reader might expect that MQ would have
a value of n at its global optimum. However, this is not the
case. The score obtainable using MQ for a perfect MDG
of n clusters can be higher than n, because the clustering
could contain more than n clusters, each of which does have
a few relationships to modules outside the cluster, but each
of which has a value only slightly lower than 1.

Therefore, the global optimum of the MQ function does
not correspond to the perfect clustering for a perfect MDG.
Because of this, searches guided by MQ do not produce the
perfect clustering for a perfect MDG, but a clustering with
a higher MQ value. These results highlight a possible weak-
ness in MQ as a guiding fitness function for modularization
searches; it may be possible to improve upon it by address-
ing this issue.

For random graphs, MQ and EVM degrade gracefully
(there are no sharp drops in the graphs of Figure 5), but MQ
produces clusterings which are consistently closer to the ini-
tial clustering, when compared to the results for EVM. That
is, the graph of the degradation in MQ’s performance is al-
ways above that for EVM. This is precisely the reverse of
the trend for perfect graphs, which is also apparent when
observing the graphs of real programs in Figure 3.

For the real programs, EVM consistently produces clus-
terings which are closer to those for the initial MDG (with
no noise) than the clusterings produced by MQ. These re-
sults must be treated with caution (see Section 2.6), but
they do suggest some possible insights into the nature of
software engineering graphs, when compared to graphs in
general.

The results show that EVM performs consistently better
than MQ in the presence of noise for both perfect and real
MDGs, but worse for random MDGs. The fact that these
results appear to be so consistent for all six of the real pro-
grams indicates that there may be a trend here. It is tempt-
ing to speculate that the results of the experiments capture
something of the nature of what constitutes a ‘real’ software
engineering graph, rather than a purely random graph (or a
‘perfect’ graph).

The results provides some empirical evidence for the claim
that real systems have dependency graphs which ‘behave’
more like perfect graphs than they behave like random graphs.
This would be perhaps a source of comfort to practitioners
of software engineering; particularly those concerned with
the maintenance of systems, where good modularization is
so essential. It is also an interesting example of search based
software engineering shedding potential insights into the na-
ture of software engineering problems and artifacts, as well
as providing a means to automate the search for good solu-
tions.

As the real programs in Figure 3 increase in size (as mea-
sured by number of nodes and edges in their MDGs), there
appears to be a decrease in the difference between the per-
formance of searches guided by EVM and those guided by
MQ. With only six programs studied, any attempt at a sta-
tistical analysis of the significance of this apparent trend
would be extremely questionable. However, the apparent
trend is noteworthy: It may suggest that the choice of fit-
ness function becomes less important as the size of a module
increases; perhaps EVM is only more robust than MQ for
smaller programs. Alternatively, it might suggest that, as
system sizes increase, the graphs of systems’ dependence be-
come more random in character and less like perfect graphs.
Further study is required to provide a definitive answer.

Overall, the results suggest that EVM may be worthy
of further consideration as a means of assessing clustering
quality. The results provide further evidence that search
techniques are highly robust and degrade gracefully in the
presence of noise in data (an optimistic finding for search
based software engineering) and that the study of search
based software engineering may be useful as a mechanism for
shedding light on the nature of software engineering prob-
lems.

4. RELATED WORK
The work reported here is most closely related to work

on the Bunch tool, by Mancoridis, Mitchell et al. [4, 13,
14, 15, 16, 17], who introduced the search-based approach
to software modularization in 1998 [14]. Harman et al. [5],
studied the effect of assigning a particular modularization
granularity as part of the search and Mahdavi et al. [11, 12]
showed how multiple hill climbs could be used to identify
building blocks which improve the behaviour of genetic al-
gorithms when applied to the search–based modularization
problems. However, despite many attempts in the litera-

1033

mtunis bison

ispell grappa

rcs incl

Figure 3: Results for the MDGs taken from Real Software Systems

ture [5, 12, 16], hill climbing has been found to be the most
effective strategy for search–based clustering to date.

A related problem of hierarchical decomposition of soft-
ware is considered by Lutz [10]. Lutz is concerned with
the problem of decomposition of software into hierarchies at
different levels of abstraction, whereas the present work is
concerned with only a single level of abstraction (the im-
plementation level). Lutz therefore considers designs rather
than code. More importantly, the fitness function used by
Lutz, is based on an information-theoretic view point in-
spired by Shannon [21]. As such, it is very different from
both MQ and EVM, so the results reported here do not
have anything to say about such and information–theoretic
approach to search–based modularization.

Other authors have used the fitness functions themselves
to assess properties of the software engineering problem un-
der consideration. For example, Kirsopp et al. [8] use a sam-
pling of the height of landscape peaks to assess aspects of
the landscape for a feature subset selection problem applied
to software cost estimation, while Pohlheim and Wegener
[18] use exhaustive analysis of projections of the landscape
to explore the characteristic of the landscape. The primary
difference between these studies and that reported here lies

in the fact that the study here involved repeated hill climbs,
rather than repeated fitness evaluations. Each hill climb
involves many fitness evaluations, so the approach adopted
here requires many more fitness evaluations to sample the
search space. The results reported in Section 3 required over
860 million fitness function evaluations.

Other work on software re-modularization has adopted
analytical solutions based upon formal concept analysis and
clustering fitness functions [6, 9, 23] and sets of heuristic
rules [20].

5. CONCLUSIONS AND FUTURE WORK
This paper has presented results concerning the robust-

ness of two fitness functions EVM and MQ. Both fitness
functions degrade smoothly as noise increases, but the EVM
fitness function appears to be the more robust fitness func-
tion for real systems, suggesting that it may be worthy of
further study as a guide for search–based module clustering.

The results also compare performance of the two cluster-
ing fitness functions for perfect and entirely random graphs,
suggesting some tantalizing (but highly tentative) observa-
tions about the nature of software systems. Specifically, the

1034

Perfect55

Perfect78

Perfect105

Figure 2: Results for ‘Perfect’ MDGs Compared to the Per-

fect Clustering Result

results appear to indicate that software systems are closer
to ideal graphs, with perfect module clusterings, than they
are to arbitrary random graphs of equivalent edge density.
Future work will investigate these observations more deeply
to explore the way in which search based software engineer-
ing can be used as a vehicle to improve understanding of the
nature of software engineering problems.

Acknowledgements
The authors would like to express their sincere thanks

to Spiros Mancoridis and Brian Mitchell for providing the
Bunch tool to experiment with, for the MDGs of the six
programs used in the experiment and for many valuable dis-
cussions on search-based modularization.

Mark Harman is supported, in part, by EPSRC Grants
GR/R98938, GR/S93684 and GR/T22865 and by three de-
velopment grants from DaimlerChrysler.

6. REFERENCES
[1] D. G. Altman. Practical Statistics for Medical

Research. Chapman and Hall, 1997.

[2] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons,

Perfect55

Perfect78

Perfect105

Figure 4: Results for ‘Perfect’ MDGs Compared to genera-

tion zero

B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis,
K. Rees, M. Roper, and M. Shepperd. Reformulating
software engineering as a search problem. IEE
Proceedings — Software, 150(3):161–175, 2003.

[3] L. L. Constantine and E. Yourdon. Structured Design.
Prentice Hall, 1979.

[4] D. Doval, S. Mancoridis, and B. S. Mitchell.
Automatic clustering of software systems using a
genetic algorithm. In International Conference on
Software Tools and Engineering Practice (STEP’99),
Pittsburgh, PA, 30 August - 2 September 1999.

[5] M. Harman, R. Hierons, and M. Proctor. A new
representation and crossover operator for search-based
optimization of software modularization. In GECCO
2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1351–1358, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[6] D. Hutchens and V. Basili. System structure analysis:
clustering with data bindings. IEEE Transactions on
Software Engineering, SE-11(8):749–757, 1985.

[7] P. Kellam, X. Liu, N. Martin, C. Orengo, S. Swift,
and A. Tucker. A framework for modelling virus gene

1035

Random50

Random75

Random100

Figure 5: Results for MDGs of Random Graphs

expression data. Intelligent Data Analysis,
6(3):267–279, 2002.

[8] C. Kirsopp, M. Shepperd, and J. Hart. Search
heuristics, case-based reasoning and software project
effort prediction. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1367–1374, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[9] C. Lindig and G. Snelting. Assessing modular
structure of legacy code based on mathematical
concept analysis. In Proceedings of the 1997
International Conference on Software Engineering,
pages 349–359. ACM Press, 1997.

[10] R. Lutz. Evolving good hierarchical decompositions of
complex systems. Journal of Systems Architecture,
47:613–634, 2001.

[11] K. Mahdavi, M. Harman, and R. Hierons. Finding
building blocks for software clustering. In Genetic and
Evolutionary Computation – GECCO-2003, volume
2724 of LNCS, pages 2513–2514, Chicago, 12-16 July
2003. Springer-Verlag.

[12] K. Mahdavi, M. Harman, and R. M. Hierons. A

multiple hill climbing approach to software module
clustering. In IEEE International Conference on
Software Maintenance (ICSM 2003), pages 315–324,
Amsterdam, Netherlands, Sept. 2003. IEEE Computer
Society Press, Los Alamitos, California, USA.

[13] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In
Proceedings; IEEE International Conference on
Software Maintenance, pages 50–59. IEEE Computer
Society Press, 1999.

[14] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen,
and E. R. Gansner. Using automatic clustering to
produce high-level system organizations of source
code. In International Workshop on Program
Comprehension (IWPC’98), pages 45–53, Ischia, Italy,
1998. IEEE Computer Society Press, Los Alamitos,
California, USA.

[15] B. S. Mitchell. A Heuristic Search Approach to Solving
the Software Clustering Problem. PhD Thesis, Drexel
University, Philadelphia, PA, Jan. 2002.

[16] B. S. Mitchell and S. Mancoridis. Using heuristic
search techniques to extract design abstractions from
source code. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1375–1382, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[17] B. S. Mitchell and S. Mancoridis. Using
interconnection style rules to infer software
architecture relations. In 8th Genetic and
Evolutionary Computing Conference (GECCO’04),
Seattle, USA, July 2004. Springer-Verlag.

[18] H. Pohlheim and J. Wegener. Testing the temporal
behavior of real-time software modules using extended
evolutionary algorithms. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 2,
page 1795, Orlando, Florida, USA, 13-17 July 1999.
Morgan Kaufmann.

[19] R. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill Book Company Europe,
Maidenhead, Berkshire, England, UK., 3rd edition,
1992. European adaptation (1994). Adapted by Darrel
Ince. ISBN 0-07-707936-1.

[20] R. W. Schwanke. An intelligent tool for re-engineering
software modularity. In Proceedings of the 13th
International Conference on Software Engineering,
pages 83–92, May 1991.

[21] C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.

[22] A. Tucker, S. Swift, and X. Liu. Grouping
multivariate time series via correlation. IEEE
Transactions on Systems, Man, and Cybernetics. Part
B: Cybernetics, 31(2):235–245, 2001.

[23] A. van Deursen and T. Kuipers. Identifying objects
using cluster and concept analysis. Technical Report
SEN-R9814, Centrum voor Wiskunde en Informatica
(CWI), Sept. 1998.

1036

